Key duplication is a common process that many people find themselves needing at some point in their lives. Whether you have lost your key, need a spare for emergencies, or simply want to give a copy to someone else, key duplication is a convenient and practical solution.
The key duplication process typically involves taking an existing key and creating an exact replica of it. This can be done at hardware stores, locksmiths, or even automated kiosks found in some supermarkets or home improvement stores. The process is relatively simple and quick, making it an easy task for anyone to accomplish.
To duplicate a key, the original key is placed in a machine that uses a cutting wheel to trace its shape onto a blank key. The cutting wheel then carves out the same pattern on the new key, resulting in an identical copy of the original. Once the new key has been cut, it is tested in the lock to ensure that it works properly.
Key duplication is a cost-effective way to ensure that you always have access to your home, office, or vehicle. It is also a convenient option for those who need to provide access to others without giving away their original keys. By having duplicates made, you can rest assured knowing that you have backup options available in case of emergencies or misplaced keys.
Overall, the key duplication process is a simple and efficient way to ensure that you always have access to your important spaces. Whether you need a spare key for convenience or security reasons, duplicating your keys is a practical solution that can save you time and stress in the long run.
Car keys are an essential part of our daily lives, allowing us to start our vehicles and go about our day. However, there may come a time when you need to replace or duplicate your car key for various reasons. Luckily, there are several types of car keys that can be easily replaced or duplicated.
One common type of car key is the traditional mechanical key, which is typically used in older model vehicles. These keys can be easily duplicated at a locksmith or hardware store for a relatively low cost. Another type of car key is the transponder key, which contains a small chip that communicates with the vehicle's immobilizer system to allow the engine to start. Transponder keys can also be replaced or duplicated by a locksmith or dealership.
For more modern vehicles, remote key fobs are becoming increasingly popular. These keys allow you to lock and unlock your car remotely, as well as start the engine with the push of a button. Remote key fobs can be replaced or reprogrammed by a dealership or automotive locksmith.
In addition to these common types of car keys, some luxury vehicles may also have proximity keys or smart keys, which use radio frequency identification (RFID) technology to communicate with the vehicle and allow for keyless entry and ignition. These types of keys can also be replaced or reprogrammed by a dealership.
Overall, if you find yourself in need of replacing or duplicating your car key, rest assured that there are several options available to you depending on the type of key you have. Whether it's a traditional mechanical key or a high-tech smart key, there are professionals who can help you get back on the road quickly and safely.
Replacing or duplicating a car key may seem like a simple task, but it is actually a job best left to the professionals. Hiring a professional car locksmith for key replacement offers numerous benefits that can save you time, money, and hassle.
One of the main advantages of hiring a professional locksmith is their expertise and experience in handling various types of keys and locks. They have the necessary skills and tools to accurately duplicate or replace your car key without causing any damage to your vehicle's ignition system or door locks.
Another benefit of hiring a professional locksmith is their quick response time. In case of an emergency where you have lost your keys or locked them inside your car, a locksmith can come to your location promptly and provide you with a new key on the spot.
Additionally, professional locksmiths are equipped with advanced technology that allows them to program electronic keys and transponder chips for modern vehicles. This ensures that your new key will work seamlessly with your car's security system.
Furthermore, hiring a professional locksmith is often more cost-effective than going through your car dealership for key replacement. Locksmiths typically offer competitive pricing for their services, saving you money in the long run.
Overall, when it comes to replacing or duplicating your car key, entrusting the job to a professional locksmith is the smart choice. Their expertise, quick response time, advanced technology, and cost-effective services make them the best option for ensuring that you have a reliable and secure key for your vehicle.
Key replacement and duplication can be a lifesaver when you find yourself locked out of your home or car. However, the cost of key replacement and duplication can vary depending on several factors.
The cost of key replacement and duplication typically includes the price of the key itself, as well as any additional fees for programming or cutting the key to fit your lock. The type of key you need replaced or duplicated can also impact the overall cost. For example, high-security keys or electronic keys may be more expensive to replace than a standard house key.
In addition to the type of key, the location and time of day can also affect the cost of key replacement and duplication. Emergency services outside of regular business hours may come with an added fee, while some locksmiths may charge more for house calls in certain areas.
Overall, it's important to shop around and compare prices from different locksmiths before committing to a service. Some locksmiths may offer discounts for multiple key replacements or duplicates, so be sure to ask about any special deals they may have.
While no one wants to think about losing their keys, knowing the potential cost of key replacement and duplication can help you prepare for any unexpected emergencies that may arise.
The term door security or door security gate may refer to any of a range of measures used to strengthen doors against door breaching, ram-raiding and lock picking, and prevent crimes such as burglary and home invasions. Door security is used in commercial and government buildings, as well as in residential settings.
Some strengthened doors function as fire doors to prevent or inhibit the spread of fire.
Alarms — designed to warn of burglaries.
The following are the types of doors typically used in residential applications: solid wood door, panel doors (hollow and solid core), metal skinned wood-edged doors and metal edge-wrapped doors, and Fiberglass doors (strongest of the residential type). Typically, door frames are solid wood. Residential doors also frequently contain wood.
Steel doors with Multi locking system are recommended by construction professionals as important equipment in your security checklist. This type of door often comes with a wooden finish to maintain a natural aesthetic in their external appearance.
Security tests by Consumer Reports Magazine in the 1990s found that many residential doors fail or delaminate when force is applied to them. Solid wood doors withstood more force than the very common metal skinned wood-edged doors used in newer construction. A broad range door manufacturer, Premdor (now Masonite) once stated in one of its 1990s brochures entitled "Premdor Entry Systems" page 6 that "The results of tests were overwhelming, Steel edged doors outperform wood-edged doors by a ratio of 7 to 1. When you consider the practically two-thirds of all illegal entries were made through doors... One hit of 100 lb [lbf] strike force broke the wood-edged stile and opened the door. To actually open the steel-edged door required 7 strikes of 100 lb pressure [force]." Most door manufactures offer a number of different types of doors with varying levels of strength.
Consumer Reports Magazine also reported in its test results that door frames often split with little force applied and lower quality deadbolts simply failed when force was applied to the door.
The Chula Vista Residential Burglary Reduction Project which studied over 1,000 incidents found that "methods found to have relatively low effectiveness included: sliding glass door braces, such as wooden dowels, as opposed to sliding door channel or pin locks; deadbolts installed in the front door only; and outdoor lights on dusk-to-dawn timers".[2]
The Chula Vista Residential Burglary-Reduction Project yielded the following findings: "From victim interviews, we learned that in 87% of the break-ins that occurred when intruders defeated locked doors with tools such as screwdrivers or crowbars, the burglars targeted "the one door that had no deadbolt lock ... not one burglar attempted to break a double-pane window during the course of successful or attempted burglary."[2]
A smart key is a vehicular passive entry system developed by Siemens in 1995 and introduced by Mercedes-Benz under the name "Keyless-Go" in 1998 on the W220 S-Class,[1] after the design patent was filed by Daimler-Benz on May 17, 1997.[2]
Numerous manufacturers subsequently developed similar passive systems that unlock a vehicle on approach — while the key remains pocketed by the user.
The smart key allows the driver to keep the key fob pocketed when unlocking, locking and starting the vehicle. The key is identified via one of several antennas in the car's bodywork and an ISM band radio pulse generator in the key housing. Depending on the system, the vehicle is automatically unlocked when a button or sensor on the door handle or trunk release is pressed. Vehicles with a smart-key system have a mechanical backup, usually in the form of a spare key blade supplied with the vehicle. Some manufacturers hide the backup lock behind a cover for styling.
Vehicles with a smart-key system can disengage the immobilizer and activate the ignition without inserting a key in the ignition, provided the driver has the key inside the car. On most vehicles, this is done by pressing a starter button or twisting an ignition switch.
When leaving a vehicle that is equipped with a smart-key system, the vehicle is locked by either pressing a button on a door handle, touching a capacitive area on a door handle, or simply walking away from the vehicle. The method of locking varies across models.
Some vehicles automatically adjust settings based on the smart key used to unlock the car. User preferences such as seat positions, steering wheel position, exterior mirror settings, climate control (e.g. temperature) settings, and stereo presets are popular adjustments. Some models, such as the Ford Escape, even have settings to prevent the vehicle from exceeding a maximum speed if it has been started with a certain key.
In 2005, the UK motor insurance research expert Thatcham introduced a standard for keyless entry, requiring the device to be inoperable at a distance of more than 10 cm from the vehicle.[citation needed] In an independent test, the Nissan Micra's system was found to be the most secure, while certain BMW and Mercedes keys failed, being theoretically capable of allowing cars to be driven away while their owners were refueling.[3] Despite these security vulnerabilities, auto theft rates have decreased 7 percent between 2009 and 2010, and the National Insurance Crime Bureau credits smart keys for this decrease.[4][5]
SmartKeys were developed by Siemens in the mid-1990s and introduced by Mercedes-Benz in 1997 to replace the infrared security system introduced in 1989. Daimler-Benz filed the first patents for SmartKey on February 28, 1997, in German patent offices, with multifunction switchblade key variants following on May 17, 1997.[6][7][8][9] The device entailed a plastic key to be used in place of the traditional metal key. Electronics that control locking systems and the ignitions made it possible to replace the traditional key with a sophisticated computerized "Key". It is considered a step up from remote keyless entry. The SmartKey adopts the remote control buttons from keyless entry, and incorporates them into the SmartKey fob.
Once inside a Mercedes-Benz vehicle, the SmartKey fob, unlike keyless entry fobs, is placed in the ignition slot where a starter computer verifies the rolling code. Verified in milliseconds, it can then be turned as a traditional key to start the engine. The device was designed with the cooperation of Siemens Automotive and Huf exclusively for Mercedes-Benz, but many luxury manufacturers have implemented similar technology based on the same idea.[citation needed] In addition to the SmartKey, Mercedes-Benz now integrates as an option Keyless Go; this feature allows the driver to keep the SmartKey in their pocket, yet giving them the ability to open the doors, trunk as well as starting the car without ever removing it from their pocket.
The SmartKey's electronics are embedded in a hollow, triangular piece of plastic, wide at the top, narrow at the bottom, squared-off at the tip with a half-inch-long insert piece. The side of the SmartKey also hides a traditional Mercedes-Benz key that can be pulled out from a release at the top. The metal key is used for valet purposes such as locking the glove compartment and/or trunk before the SmartKey is turned over to a parking attendant. Once locked manually, the trunk cannot be opened with the SmartKey or interior buttons. The key fob utilizes a radio-frequency transponder to communicate with the door locks, but it uses infrared to communicate with the engine immobilizer system. The original SmartKeys had a limited frequency and could have only been used in line-of-sight for safety purposes. The driver can also point the smart key at the front driver side door while pushing and holding the unlock button on the SmartKey and the windows and the sunroof will open in order to ventilate the cabin. Similarly, if the same procedure is completed while holding the lock button, the windows and sunroof will close. In cars equipped with the Active Ventilated Seats, the summer opening feature will activate seat ventilation in addition to opening the windows and sunroof.[citation needed]
Display Key is a type of smart key developed by BMW that includes a small LCD color touchscreen on it. It performs the standard functions that a key fob would normally do such as locking, unlocking & keyless start, but because of the screen the user can also perform a number of the features from BMW's app. One of which includes commanding the car to self park from the key if your car has self parking capability. The key is currently available for the 3 Series, 4 Series, 5 Series, 6 Series, 7 Series, 8 Series, X3, X4, X5, X6, and X7. The key is rechargeable and will last about 3 weeks. It can be charged via a micro USB port on the side or wirelessly on the center console.
Keyless Go (also: Keyless Entry / Go; Passive Entry / Go) is Mercedes' term for an automotive technology which allows a driver to lock and unlock a vehicle without using the corresponding SmartKey buttons.[10] Once a driver enters a vehicle with an equipped Keyless Go SmartKey or Keyless Go wallet-size card, they have the ability to start and stop the engine, without inserting the SmartKey. A transponder built within the SmartKey allows the vehicle to identify a driver. An additional safety feature is integrated into the vehicle, making it impossible to lock a SmartKey with Keyless Go inside a vehicle.
The system works by having a series of LF (low frequency 125 kHz) transmitting antennas both inside and outside the vehicle. The external antennas are located in the door handles. When the vehicle is triggered, either by pulling the handle or touching the handle, an LF signal is transmitted from the antennas to the key. The key becomes activated if it is sufficiently close and it transmits its ID back to the vehicle via RF (Radio frequency >300 MHz) to a receiver located in the vehicle. If the key has the correct ID, the PASE module unlocks the vehicle.
The hardware blocks of a Keyless Entry / Go Electronic control unit ECU are based on its functionality:
The smart key determines if it is inside or outside the vehicle by measuring the strength of the LF fields. In order to start the vehicle, the smart key must be inside the vehicle.
It is important that the vehicle can't be started when the user and therefore the smart key is outside the vehicle. This is especially important at fueling stations where the user is very close to the vehicle. The internal LF field is allowed to overshoot by a maximum of 10 cm to help minimise this risk. Maximum overshoot is usually found on the side windows where there is very little attenuation of the signal.
A second scenario exists under the name "relay station attack" (RSA). The RSA is based on the idea of reducing the long physical distance between the car and the regular car owner's SmartKey. Two relay stations will be needed for this: The first relay station is located nearby the car and the second is close to the SmartKey. So on first view, the Keyless Entry / Go ECU and the SmartKey could communicate together. A third person at the car could pull the door handle and the door would open. However, in every Keyless Entry / Go system provisions exist to avoid a successful two-way communication via RSA. Some of the most known are:
Furthermore, Keyless Entry / Go communicates with other Control Units within the same vehicle. Depending on the electric car architecture, the following are some Control Systems that can be enabled or disabled:
Another possibility is using a motion sensor within the key fob.[11][12]
Dead spots are a result of the maximum overshoot requirement from above. The power delivered to the internal LF antennas has to be tuned to provide the best performance i.e. minimum dead spots and maximum average overshoot. Dead spots are usually near the extremities of the vehicle e.g. the rear parcel shelf.
If the battery in the smart key becomes depleted, it is necessary for there to be a backup method of opening and starting the vehicle. Opening is achieved by an emergency (fully mechanical) key blade usually hidden in the smart key. On many cars emergency starting is achieved by use of an inductive coupling. The user either has to put the key in a slot or hold it near a special area on the cockpit, where there is an inductive coil hidden behind which transfers energy to a matching coil in the dead key fob using inductive charging.
Slots have proven to be problematic, as they can go wrong and the key becomes locked in and cannot be removed. Another problem with the slot is it can't compensate for a fob battery below certain operating threshold. Most smart key batteries are temperature sensitive causing the fob to become intermittent, fully functional, or inoperative all in the same day.
A Keyless Entry / Go system should be able to detect and handle most of the following cases:
A test by ADAC revealed that 20 car models with Keyless Go could be entered and driven away without the key.[13][14][15][16] In 2014, 6,000 cars (about 17 per day) were stolen using keyless entry in London.[17]
A safe (also called a strongbox or coffer) is a secure lockable enclosure used for securing valuable objects against theft or fire. A safe is usually a hollow cuboid or cylinder, with one face being removable or hinged to form a door. The body and door may be cast from metal (such as steel) or formed out of plastic through blow molding. Bank teller safes typically are secured to the counter, have a slit opening for dropping valuables into the safe without opening it, and a time-delay combination lock to foil thieves. One significant distinction between types of safes is whether the safe is secured to a wall or structure or if it can be moved around.
The first known safe dates back to the 13th century BC and was found in the tomb of Pharaoh Ramesses II. It was made of wood and consisted of a locking system resembling the modern pin tumbler lock.[1]
In the 16th century, blacksmiths in southern Germany, Austria, and France first forged cash boxes in sheet iron. These sheet-iron money chests served as the models for mass-produced cash boxes in the 19th century.[2]
In the 17th century, in northern Europe, iron safes were sometimes made in the shape of a barrel, with a padlock on top.[3]
In 1835, English inventors Charles and Jeremiah Chubb in Wolverhampton, England, received a patent for a burglar-resisting safe and began a production of safes.[4] The Chubb brothers had produced locks since 1818. Chubb Locks was an independent company until 2000 when it was sold to Assa Abloy.
On November 2, 1886, inventor Henry Brown patented a "receptacle for storing and preserving papers". The container was fire retardant and accident resistant as it was made from forged metal. The box was able to be safely secured with a lock and key and also able to maintain organization by offering different slots to organize important papers.[5][6]
Specifications for safes include some or all of the following parameters:
It is often possible to open a safe without access to the key or knowledge of the combination; this activity is known as safe-cracking and is a popular theme in heist films.
A diversion safe, or hidden safe, is a safe that is made from an otherwise ordinary object such as a book, a candle, a can, or wall outlet. Valuables are placed in these hidden safes, which are themselves placed inconspicuously (for example, a book would be placed on a book shelf).
Fire-resistant record protection equipment consists of self-contained devices that incorporate insulated bodies, doors, drawers or lids, or non-rated multi-drawer devices housing individually rated containers that contain one or more inner compartments for storage of records. These devices are intended to provide protection to one or more types of records as evidenced by the assigned Class rating or ratings; Class 350 for paper, Class 150 for microfilm, microfiche other and photographic film and Class 125 for magnetic media and hard drives. Enclosures of this type are typically rated to protect contents for 1⁄2, 1, 2, or 4 hours; they will not protect indefinitely. They may also be rated for their resistance to impact should the safe fall a specified distance onto a hard surface, or have debris fall upon it during a fire.[7]
Burglary-resistant safes are rated as to their resistance to various types of tools and the duration of the attack.
Safes can contain hardware that automatically dispenses cash or validates bills as part of an automated cash handling system.
For larger volumes of heat-sensitive materials, a modular room-sized vault is much more economical than purchasing and storing many fire rated safes. Typically these room-sized vaults are utilized by corporations, government agencies and off-site storage service firms. Fireproof vaults are rated up to Class 125-4 Hour for large data storage applications. These vaults utilize ceramic fiber, a high temperature industrial insulating material, as the core of their modular panel system. All components of the vault, not just the walls and roof panels, must be Class 125 rated to achieve that overall rating for the vault. This includes the door assembly (a double door is needed since there is no single Class 125 vault door available), cable penetrations, coolant line penetrations (for split HVAC systems), and air duct penetrations.
There are also Class 150 applications (such as microfilm) and Class 350 vaults for protecting valuable paper documents. Like the data-rated (Class 125) structures, these vault systems employ ceramic fiber insulation and components rated to meet or exceed the required level of protection.
In recent years room-sized Class 125 vaults have been installed to protect entire data centers. As data storage technologies migrate from tape-based storage methods to hard drives, this trend is likely to continue.[8]
A fire-resistant safe is a type of safe that is designed to protect its contents from high temperatures or actual fire. Fire resistant safes are usually rated by the amount of time they can withstand the extreme temperatures a fire produces, while not exceeding a set internal temperature, e.g., less than 350 °F (177 °C). Models are typically available between half-hour and four-hour durations.
In the UK, the BS EN-1047 standard is set aside for data and document safes to determine their ability to withstand prolonged intense heat and impact damage.
These conditions are maintained for the duration of the test. This is usually at least 30 minutes but can extend to many hours depending on grade. Both kinds of safe are also tested for impact by dropping from a set height onto a solid surface and then tested for fire survivability once again.[9]
In the United States, both the writing of standards for fire-resistance and the actual testing of safes is performed by Underwriters Laboratories.
An in-floor safe installed in a concrete floor is very resistant to fire. However, not all floor safes are watertight; they may fill with water from fire hoses. Contents can be protected against water damage by appropriate packaging.
Reinforced, fireproof cabinets are also used for dangerous chemicals or flammable goods.
Wall safes are designed to provide hidden protection for documents and miscellaneous valuables. Adjustable depth allows the maximization of usable space when installed in different wall thicknesses. Some wall safes have pry-resistant recessed doors with concealed hinges. A painting or other wall decoration may be hung over a wall safe to hide it.
Small safes may be fixed to a wall to prevent the entire safe being removed, without concealment. Very small secure enclosures known as key safes, opened by entering a combination, are attached to the wall of a building to store the keys allowing access, so that they are available only to a person knowing the combination, typically for holiday lets, carers, or emergency use.[10][11]
Safe-cracking is opening a safe without a combination or key. There are many methods of safe-cracking ranging from brute force methods to guessing the combination. The easiest method that can be used on many safes is "safe bouncing", which involves hitting the safe on top; this may cause the locking pin to budge, opening the safe[citation needed].
Physicist Richard Feynman gained a reputation for safe-cracking while working on the Manhattan Project during the Second World War. He did this for recreation, describing his experiences and methods in detail in his book Surely You're Joking, Mr. Feynman!. He made the point that the secure storage he successfully opened clandestinely (to which he would have been given access if he asked) contained contents far more important than any thief had ever accessed, all the secrets of the wartime atomic bomb project.[12]
Underwriters Laboratories (UL) testing certifications are known to be some of the most rigorous and most respected in the world.[13] UL provides numerous ratings, the most common security and fire ratings as discussed below. UL ratings are the typical rating standards used for safes within the United States. They are only matched by B.T.U/VDMA certifications (Germany).[14]
UL provides a variety of fire rating classifications, 125, 150, and 350 representing the maximum internal temperature in degrees Fahrenheit the safe may not exceed during the test. The classifications come in durations from
1⁄2-hour to 4 hours in length. The safe is exposed to gradually higher temperatures depending on the duration of the test. The most common standards being the 350 one hour (1,700 degrees) and 350 two hour (1,850 degrees) ratings as the temperature paper chars is approximately 451 degrees Fahrenheit.[15]
UL standards are one of the principal North American protection standards.[16] The resistance time limit specifies "tools on the safe" time without access to contents.[17] The test might take hours to run and can be repeated as many times as the UL staff feel necessary to ensure that all prospective avenues of attack have been thoroughly explored.
This is the entry level security rating offered by Underwriters Laboratories and it has its own standard: (UL 1037).[18] The standard originally had one level, now known as RSC Level I. The standard was expanded in 2016 providing a greater range of security options.[19] This standard also involves a drop test for products weighing not more than 750 pounds, simulating attempting to gain entry by dropping the safe.[20]
Safes at this level are typically, but not exclusively, used for commercial applications such as jewelers and coin dealers. These ratings are granted to combination locked safes that successfully resist when attacked by two technicians with common hand tools, picking tools, mechanical or portable electric tools, grinding points, carbide drills and pressure applying devices or mechanisms. In addition to those requirements, the safe must weigh at least 750 pounds or come with instructions for anchoring, and have body walls of material equivalent to at least 1" open hearth steel with a minimum tensile strength of 50,000 psi. The UL Standard for tool-resistant safes and above are governed by UL Standard 687.[21][22]
Depending on the usage, the European Committee for Standardization has published different European standards for safes. Testing and certification according to these standards should be done by an accredited certification body, e.g. European Certification Body.[24]
For fire-resistant safes the EN 1047-1 (fire resistance standard similar to the fire resistance safe standard of UL) and EN 15659 (for light fire storage units) were published.[27]