Online key duplication services offer a convenient and efficient way to duplicate keys without the hassle of visiting a locksmith in person. One of the main benefits of using these services is the time-saving aspect. Instead of having to take time out of your day to drive to a physical location, you can simply upload a picture or scan of your key online and have a duplicate sent directly to your doorstep.
Another major advantage is the cost savings associated with online key duplication services. In most cases, these services are more affordable than going to a traditional locksmith, as they do not have the overhead costs associated with maintaining a storefront. This means that you can get your keys duplicated at a fraction of the cost without sacrificing quality.
Additionally, online key duplication services offer a wider range of options when it comes to key types and designs. Whether you need a standard house key or a specialized car key, these services can accommodate your needs and provide you with high-quality duplicates that work just as well as the original.
Overall, online key duplication services provide a convenient, cost-effective, and reliable solution for duplicating keys without the need for an in-person visit to a locksmith. With just a few clicks, you can have your keys duplicated and delivered right to your door, saving you time and money in the process.
With the rise of technology, online key duplication services have become increasingly popular. While the convenience of being able to duplicate keys from the comfort of your own home is undeniable, there are also security concerns that come along with these services.
One major issue is the potential for hackers to intercept sensitive information during the key duplication process. If a hacker were able to gain access to your key information, they could potentially make copies of your keys without your knowledge or consent. This poses a serious threat to your home or business security.
Another concern is the lack of regulation in the online key duplication industry. Many online key duplication services do not have strict verification processes in place to ensure that only authorized individuals are able to duplicate keys. This leaves room for potential misuse and abuse of these services.
Furthermore, there is always the risk of data breaches and hacking attacks on online platforms. If a key duplication service were to experience a data breach, all of their customers' sensitive information could be compromised.
In order to mitigate these security concerns, it is important for individuals using online key duplication services to research and choose reputable providers with strong security measures in place. It is also crucial to use secure and encrypted platforms when submitting key information for duplication.
Overall, while online key duplication services offer convenience and efficiency, it is essential for users to be aware of the security risks associated with these services and take necessary precautions to protect their personal information and property.
When it comes to choosing the right online key duplication service, there are a few important factors to consider. First and foremost, you'll want to make sure that the service you choose is reputable and trustworthy. Look for reviews and testimonials from past customers to get an idea of the company's reputation.
Additionally, it's important to consider the security measures that the online key duplication service has in place. You'll be sharing sensitive information with them, so you'll want to make sure that your data is protected. Look for services that use encryption and other security protocols to keep your information safe.
Another important factor to consider is the cost of the service. While you don't want to skimp on quality when it comes to something as important as key duplication, you also don't want to overpay. Shop around and compare prices from different online key duplication services to find one that offers a fair price for their services.
Lastly, consider the convenience of the service. Look for a company that offers quick turnaround times and easy ordering processes. You don't want to wait weeks for your keys to arrive, so make sure that the service you choose can deliver in a timely manner.
By taking these factors into consideration, you can choose the right online key duplication service for your needs with confidence.
When it comes to online key duplication services, there are a plethora of options available in the market. With so many choices, it can be overwhelming to determine which service is the best for your needs. This is where reviews and recommendations play a crucial role in helping you make an informed decision.
Reading reviews from other customers who have used the service can provide valuable insights into the quality and reliability of the online key duplication service. Positive reviews can give you confidence in the service's ability to deliver accurate and reliable duplicate keys, while negative reviews can alert you to potential red flags that may indicate subpar service.
In addition to reading reviews, seeking recommendations from friends, family, or colleagues who have used online key duplication services can also be beneficial. Personal recommendations carry weight because they come from trusted sources who have first-hand experience with the service. They can offer valuable insights and advice on which online key duplication service to choose based on their own positive or negative experiences.
Ultimately, utilizing reviews and recommendations can help you navigate the vast landscape of online key duplication services and make an informed decision that aligns with your needs and preferences. By leveraging the experiences of others, you can confidently select a reputable online key duplication service that will provide accurate and reliable duplicate keys for your peace of mind.
A safe (also called a strongbox or coffer) is a secure lockable enclosure used for securing valuable objects against theft or fire. A safe is usually a hollow cuboid or cylinder, with one face being removable or hinged to form a door. The body and door may be cast from metal (such as steel) or formed out of plastic through blow molding. Bank teller safes typically are secured to the counter, have a slit opening for dropping valuables into the safe without opening it, and a time-delay combination lock to foil thieves. One significant distinction between types of safes is whether the safe is secured to a wall or structure or if it can be moved around.
The first known safe dates back to the 13th century BC and was found in the tomb of Pharaoh Ramesses II. It was made of wood and consisted of a locking system resembling the modern pin tumbler lock.[1]
In the 16th century, blacksmiths in southern Germany, Austria, and France first forged cash boxes in sheet iron. These sheet-iron money chests served as the models for mass-produced cash boxes in the 19th century.[2]
In the 17th century, in northern Europe, iron safes were sometimes made in the shape of a barrel, with a padlock on top.[3]
In 1835, English inventors Charles and Jeremiah Chubb in Wolverhampton, England, received a patent for a burglar-resisting safe and began a production of safes.[4] The Chubb brothers had produced locks since 1818. Chubb Locks was an independent company until 2000 when it was sold to Assa Abloy.
On November 2, 1886, inventor Henry Brown patented a "receptacle for storing and preserving papers". The container was fire retardant and accident resistant as it was made from forged metal. The box was able to be safely secured with a lock and key and also able to maintain organization by offering different slots to organize important papers.[5][6]
Specifications for safes include some or all of the following parameters:
It is often possible to open a safe without access to the key or knowledge of the combination; this activity is known as safe-cracking and is a popular theme in heist films.
A diversion safe, or hidden safe, is a safe that is made from an otherwise ordinary object such as a book, a candle, a can, or wall outlet. Valuables are placed in these hidden safes, which are themselves placed inconspicuously (for example, a book would be placed on a book shelf).
Fire-resistant record protection equipment consists of self-contained devices that incorporate insulated bodies, doors, drawers or lids, or non-rated multi-drawer devices housing individually rated containers that contain one or more inner compartments for storage of records. These devices are intended to provide protection to one or more types of records as evidenced by the assigned Class rating or ratings; Class 350 for paper, Class 150 for microfilm, microfiche other and photographic film and Class 125 for magnetic media and hard drives. Enclosures of this type are typically rated to protect contents for 1⁄2, 1, 2, or 4 hours; they will not protect indefinitely. They may also be rated for their resistance to impact should the safe fall a specified distance onto a hard surface, or have debris fall upon it during a fire.[7]
Burglary-resistant safes are rated as to their resistance to various types of tools and the duration of the attack.
Safes can contain hardware that automatically dispenses cash or validates bills as part of an automated cash handling system.
For larger volumes of heat-sensitive materials, a modular room-sized vault is much more economical than purchasing and storing many fire rated safes. Typically these room-sized vaults are utilized by corporations, government agencies and off-site storage service firms. Fireproof vaults are rated up to Class 125-4 Hour for large data storage applications. These vaults utilize ceramic fiber, a high temperature industrial insulating material, as the core of their modular panel system. All components of the vault, not just the walls and roof panels, must be Class 125 rated to achieve that overall rating for the vault. This includes the door assembly (a double door is needed since there is no single Class 125 vault door available), cable penetrations, coolant line penetrations (for split HVAC systems), and air duct penetrations.
There are also Class 150 applications (such as microfilm) and Class 350 vaults for protecting valuable paper documents. Like the data-rated (Class 125) structures, these vault systems employ ceramic fiber insulation and components rated to meet or exceed the required level of protection.
In recent years room-sized Class 125 vaults have been installed to protect entire data centers. As data storage technologies migrate from tape-based storage methods to hard drives, this trend is likely to continue.[8]
A fire-resistant safe is a type of safe that is designed to protect its contents from high temperatures or actual fire. Fire resistant safes are usually rated by the amount of time they can withstand the extreme temperatures a fire produces, while not exceeding a set internal temperature, e.g., less than 350 °F (177 °C). Models are typically available between half-hour and four-hour durations.
In the UK, the BS EN-1047 standard is set aside for data and document safes to determine their ability to withstand prolonged intense heat and impact damage.
These conditions are maintained for the duration of the test. This is usually at least 30 minutes but can extend to many hours depending on grade. Both kinds of safe are also tested for impact by dropping from a set height onto a solid surface and then tested for fire survivability once again.[9]
In the United States, both the writing of standards for fire-resistance and the actual testing of safes is performed by Underwriters Laboratories.
An in-floor safe installed in a concrete floor is very resistant to fire. However, not all floor safes are watertight; they may fill with water from fire hoses. Contents can be protected against water damage by appropriate packaging.
Reinforced, fireproof cabinets are also used for dangerous chemicals or flammable goods.
Wall safes are designed to provide hidden protection for documents and miscellaneous valuables. Adjustable depth allows the maximization of usable space when installed in different wall thicknesses. Some wall safes have pry-resistant recessed doors with concealed hinges. A painting or other wall decoration may be hung over a wall safe to hide it.
Small safes may be fixed to a wall to prevent the entire safe being removed, without concealment. Very small secure enclosures known as key safes, opened by entering a combination, are attached to the wall of a building to store the keys allowing access, so that they are available only to a person knowing the combination, typically for holiday lets, carers, or emergency use.[10][11]
Safe-cracking is opening a safe without a combination or key. There are many methods of safe-cracking ranging from brute force methods to guessing the combination. The easiest method that can be used on many safes is "safe bouncing", which involves hitting the safe on top; this may cause the locking pin to budge, opening the safe[citation needed].
Physicist Richard Feynman gained a reputation for safe-cracking while working on the Manhattan Project during the Second World War. He did this for recreation, describing his experiences and methods in detail in his book Surely You're Joking, Mr. Feynman!. He made the point that the secure storage he successfully opened clandestinely (to which he would have been given access if he asked) contained contents far more important than any thief had ever accessed, all the secrets of the wartime atomic bomb project.[12]
Underwriters Laboratories (UL) testing certifications are known to be some of the most rigorous and most respected in the world.[13] UL provides numerous ratings, the most common security and fire ratings as discussed below. UL ratings are the typical rating standards used for safes within the United States. They are only matched by B.T.U/VDMA certifications (Germany).[14]
UL provides a variety of fire rating classifications, 125, 150, and 350 representing the maximum internal temperature in degrees Fahrenheit the safe may not exceed during the test. The classifications come in durations from
1⁄2-hour to 4 hours in length. The safe is exposed to gradually higher temperatures depending on the duration of the test. The most common standards being the 350 one hour (1,700 degrees) and 350 two hour (1,850 degrees) ratings as the temperature paper chars is approximately 451 degrees Fahrenheit.[15]
UL standards are one of the principal North American protection standards.[16] The resistance time limit specifies "tools on the safe" time without access to contents.[17] The test might take hours to run and can be repeated as many times as the UL staff feel necessary to ensure that all prospective avenues of attack have been thoroughly explored.
This is the entry level security rating offered by Underwriters Laboratories and it has its own standard: (UL 1037).[18] The standard originally had one level, now known as RSC Level I. The standard was expanded in 2016 providing a greater range of security options.[19] This standard also involves a drop test for products weighing not more than 750 pounds, simulating attempting to gain entry by dropping the safe.[20]
Safes at this level are typically, but not exclusively, used for commercial applications such as jewelers and coin dealers. These ratings are granted to combination locked safes that successfully resist when attacked by two technicians with common hand tools, picking tools, mechanical or portable electric tools, grinding points, carbide drills and pressure applying devices or mechanisms. In addition to those requirements, the safe must weigh at least 750 pounds or come with instructions for anchoring, and have body walls of material equivalent to at least 1" open hearth steel with a minimum tensile strength of 50,000 psi. The UL Standard for tool-resistant safes and above are governed by UL Standard 687.[21][22]
Depending on the usage, the European Committee for Standardization has published different European standards for safes. Testing and certification according to these standards should be done by an accredited certification body, e.g. European Certification Body.[24]
For fire-resistant safes the EN 1047-1 (fire resistance standard similar to the fire resistance safe standard of UL) and EN 15659 (for light fire storage units) were published.[27]
Key duplication refers to the process of creating a key based on an existing key. Key cutting is the primary method of key duplication: a flat key is fitted into a vise in a machine, with a blank attached to a parallel vise, and the original key is moved along a guide, while the blank is moved against a blade, which cuts it. After cutting, the new key is deburred: scrubbed with a wire brush, either built into the machine, or in a bench grinder, to remove burrs which, were they not removed, would be dangerously sharp and, further, foul locks.
Different key cutting machines are more or less automated, using different milling or grinding equipment, and follow the design of early 20th century key duplicators.
Key duplication is available in many retail hardware stores and as a service of the specialized locksmith, though the correct key blank may not be available. More recently, online services for duplicating keys have become available.
In the UK, the majority of the mobile locksmiths will have a dual key cutting machine on their van. The key duplication machine will be able to cut both cylinder and mortise keys, as these are the most popular types of keys in circulation. However, very few will carry a laser key cutting machine, which is sometimes needed to cut high security keys.
Certain keys are designed to be difficult to copy, for key control, such as Medeco; while others are simply stamped "Do Not Duplicate" to advise that key control is requested, but in the US, this disclaimer has no legal weight.
Rather than using a pattern grinder to remove metal, keys may also be duplicated with a punch machine (the Curtis key clipper[1] is a recognised example). The key to be duplicated is measured for the depth of each notch with a gauge and then placed into a device with a numeric slider. The slider is adjusted to match the corresponding measured depth and a lever is depressed, which cuts the entire notch at once. As the lever is raised the key automatically advances to the next indexed position and the slider is adjusted appropriately to the next measured depth. This cycle is continued until the key is complete.
Duplicating keys by this process is more labor intense and requires somewhat better trained personnel. However, keys made in this fashion have clean margins and the depth of the notches are not subject to wear induced changes encountered when heavily worn keys are duplicated using a pattern grinder. Keys may also be made in this fashion without an original as long as the depth of each notch and the type of key blank are known. This is particularly useful for institutions with a great number of locks for which they do not want to maintain a wide variety of archived copies. Code books or on-line resources may be used to program the key clipper/punch settings from the code stamped on the lock, listed in the owner's manual, or available from the vehicle's VIN.[2]
A machine permitting rapid duplication of flat metal keys, which contributed to the proliferation of their use during the 20th century, may have been first invented in the United States in 1917 (image to the left):
The key to be duplicated is placed in one vise and the blank key to be cut in a corresponding vise under the cutting disk. The vise carriage is then into such position by means of a lateral-feed clutch that the shoulders of both the pattern and blank keys just touch the guide disk and cutter respectively. The lateral-feed clutch on the top of the machine is then thrown, and the vertical feed rod released into action and power applied through the combination hand-crank power wheel on the right of the machine, until the cutter has passed over the entire length at the blank. A duplicate of the pattern key is obtained in about one minute. — "Man And His Machines", The World's Work XXXIII:6 April 1917
The key to be duplicated is placed in one vise and the blank key to be cut in a corresponding vise under the cutting disk. The vise carriage is then into such position by means of a lateral-feed clutch that the shoulders of both the pattern and blank keys just touch the guide disk and cutter respectively. The lateral-feed clutch on the top of the machine is then thrown, and the vertical feed rod released into action and power applied through the combination hand-crank power wheel on the right of the machine, until the cutter has passed over the entire length at the blank. A duplicate of the pattern key is obtained in about one minute.
In recent years, dual key cutting machines have come on to the market, enabling cutting of both mortice and cylinder keys on one machine. These machines are primarily manufactured in the Far East and save a key cutter a significant amount of money compared with using two separate dedicated machines.
A "do not duplicate" key (or DND key, for short) is one that has been stamped "do not duplicate", "duplication prohibited" or similar by a locksmith or manufacturer as a passive deterrent to discourage a retail key cutting service from duplicating a key without authorization or without contacting the locksmith or manufacturer who originally cut the key. More importantly, this is a key control system for the owner of the key, such as a maintenance person or security guard, to identify keys that should not be freely distributed or used without authorization. Though it is intended to prevent unauthorized key duplication, copying DND keys remains a common security problem.
There is no direct legal sanction in the US for someone who copies a key that is stamped do not duplicate (unless it is an owned key), but there are patent restrictions on some key designs (see "restricted keys"). The Associated Locksmiths of America, ALOA, calls DND keys "not effective security", and "deceptive because it provides a false sense of security." 18 U.S.C. § 1704 deals with United States Post Office keys, and 18 U.S.C. § 1386 deals with United States Department of Defense keys.
A restricted key is a type of key that is designed to limit access to a specific area or object. These keys are typically used in high-security environments, such as government facilities, military bases, and certain businesses that require strict access control.
Restricted keys are unique in that they are only able to be duplicated by authorized individuals or locksmiths who have the proper identification and authorization to do so. This helps to ensure that the key cannot be copied or used by unauthorized individuals.
Some common examples of restricted key systems include master key systems, where a single key can open multiple locks within a building, and key control systems which allow for precise tracking of key usage and access control. Overall, restricted keys are an important tool for maintaining security and controlling access to sensitive areas.
A restricted keyblank has a keyway for which a manufacturer has set up a restricted level of sales and distribution. Restricted keys are often protected by patent, which prohibits other manufacturers from making unauthorized productions of the key blank. In many cases, customers must provide proof of ID before a locksmith will cut additional keys using restricted blanks. Some companies, such as Medeco High Security Locks, have keyways that are restricted to having keys cut in the factory only. This is done to ensure the highest amount of security. These days, many restricted keys have special in-laid features, such as magnets, different types of metal, or even small computer chips to prevent duplication.
Another way to restrict keys is trademarking the profile of the key. For example, the profile of the key can read the name of the manufacturer. The advantage of a trademark is that the legal protection for a trademark can be longer than the legal protection for a patent. However, usually not all features of the profile are necessary to create a working key. By removing certain unnecessary features, a non restricted profile can be derived, allowing the production and distribution of non restricted key blanks.
Lock(s) or Locked may refer to: