When it comes to ensuring quality control measures are in place, one important aspect is the inspection of key machine calibration. This process involves checking and verifying that the key machine is properly calibrated to ensure accurate and precise key cutting.
The calibration of a key machine is crucial for producing keys that fit locks correctly. If the machine is not calibrated correctly, it can result in keys that do not work properly or fit snugly into locks. This can lead to customer dissatisfaction and potential security risks.
Inspecting key machine calibration involves testing the accuracy of the machine by cutting test keys and then checking them against known standards. Any discrepancies found during this process should be promptly addressed and corrected to maintain the quality and reliability of key cutting services.
Regular inspections of key machine calibration are essential to prevent errors and ensure consistent quality in key production. By maintaining proper calibration, businesses can uphold high standards of customer service and satisfaction while also minimizing the risk of costly mistakes.
In conclusion, inspection of key machine calibration plays a vital role in quality control measures for businesses that offer key cutting services. By ensuring that machines are properly calibrated, companies can deliver reliable and accurate keys to their customers, ultimately building trust and loyalty in their brand.
Ensuring the quality of key blanks is an essential component of any locksmith's work. Verification of key blank quality is a crucial step in the production process, as it ensures that each key will function properly and provide security for the end user.
Key blank quality can be verified through a number of different measures, including visual inspection, physical testing, and comparison to industry standards. Visual inspection involves examining the key blank for any imperfections or inconsistencies in its shape or surface. Physical testing may include checking the key blank's durability by attempting to bend or break it. Comparison to industry standards involves measuring the key blank against predetermined specifications to ensure that it meets all necessary requirements.
By implementing these quality control measures, locksmiths can guarantee that their customers receive only the highest-quality key blanks. This not only provides peace of mind for the end user but also helps to maintain the reputation and credibility of the locksmithing profession as a whole.
In conclusion, verification of key blank quality is an essential aspect of ensuring customer satisfaction and maintaining professional standards in the locksmithing industry. By adhering to strict quality control measures, locksmiths can be confident in the reliability and security of their products, ultimately leading to greater success and trust within their field.
Quality control measures are essential in ensuring the accuracy and reliability of products and services. One such measure is the examination of duplicate key accuracy. This process involves comparing duplicate keys to ensure that they match exactly, thereby minimizing errors and discrepancies.
By conducting a thorough examination of duplicate keys, companies can identify any inconsistencies or inaccuracies that may have occurred during the key duplication process. This helps to maintain high standards of quality and efficiency, ultimately leading to improved customer satisfaction.
Additionally, examining duplicate key accuracy can also help to prevent potential security risks. Ensuring that duplicate keys are an exact match reduces the likelihood of unauthorized access to sensitive areas or information.
Overall, the examination of duplicate key accuracy is a crucial aspect of quality control measures that should not be overlooked. By implementing this practice, companies can uphold their commitment to delivering reliable products and services while safeguarding against potential risks.
Monitoring customer satisfaction is a crucial aspect of ensuring product or service quality. One important factor to consider when monitoring customer satisfaction is the presence of duplicates in the feedback. Duplicates can skew the overall results and make it difficult to accurately assess customer sentiment.
To effectively monitor customer satisfaction with duplicates, it is essential to have a systematic approach in place. This may involve implementing software that can identify and remove duplicate feedback entries, or manually reviewing feedback to flag any duplicates. By doing so, organizations can ensure that they are capturing unique customer perspectives and accurately gauging overall satisfaction levels.
Furthermore, monitoring customer satisfaction with duplicates allows organizations to identify trends and patterns in feedback more easily. By eliminating duplicate entries, businesses can focus on analyzing the most relevant and representative feedback, leading to more actionable insights for driving improvements in product or service quality.
In conclusion, monitoring customer satisfaction with duplicates is an important quality control measure that can help organizations better understand their customers' needs and preferences. By implementing strategies to identify and address duplicates in feedback data, businesses can enhance their ability to deliver exceptional products and services that meet or exceed customer expectations.
A safe (also called a strongbox or coffer) is a secure lockable enclosure used for securing valuable objects against theft or fire. A safe is usually a hollow cuboid or cylinder, with one face being removable or hinged to form a door. The body and door may be cast from metal (such as steel) or formed out of plastic through blow molding. Bank teller safes typically are secured to the counter, have a slit opening for dropping valuables into the safe without opening it, and a time-delay combination lock to foil thieves. One significant distinction between types of safes is whether the safe is secured to a wall or structure or if it can be moved around.
The first known safe dates back to the 13th century BC and was found in the tomb of Pharaoh Ramesses II. It was made of wood and consisted of a locking system resembling the modern pin tumbler lock.[1]
In the 16th century, blacksmiths in southern Germany, Austria, and France first forged cash boxes in sheet iron. These sheet-iron money chests served as the models for mass-produced cash boxes in the 19th century.[2]
In the 17th century, in northern Europe, iron safes were sometimes made in the shape of a barrel, with a padlock on top.[3]
In 1835, English inventors Charles and Jeremiah Chubb in Wolverhampton, England, received a patent for a burglar-resisting safe and began a production of safes.[4] The Chubb brothers had produced locks since 1818. Chubb Locks was an independent company until 2000 when it was sold to Assa Abloy.
On November 2, 1886, inventor Henry Brown patented a "receptacle for storing and preserving papers". The container was fire retardant and accident resistant as it was made from forged metal. The box was able to be safely secured with a lock and key and also able to maintain organization by offering different slots to organize important papers.[5][6]
Specifications for safes include some or all of the following parameters:
It is often possible to open a safe without access to the key or knowledge of the combination; this activity is known as safe-cracking and is a popular theme in heist films.
A diversion safe, or hidden safe, is a safe that is made from an otherwise ordinary object such as a book, a candle, a can, or wall outlet. Valuables are placed in these hidden safes, which are themselves placed inconspicuously (for example, a book would be placed on a book shelf).
Fire-resistant record protection equipment consists of self-contained devices that incorporate insulated bodies, doors, drawers or lids, or non-rated multi-drawer devices housing individually rated containers that contain one or more inner compartments for storage of records. These devices are intended to provide protection to one or more types of records as evidenced by the assigned Class rating or ratings; Class 350 for paper, Class 150 for microfilm, microfiche other and photographic film and Class 125 for magnetic media and hard drives. Enclosures of this type are typically rated to protect contents for 1⁄2, 1, 2, or 4 hours; they will not protect indefinitely. They may also be rated for their resistance to impact should the safe fall a specified distance onto a hard surface, or have debris fall upon it during a fire.[7]
Burglary-resistant safes are rated as to their resistance to various types of tools and the duration of the attack.
Safes can contain hardware that automatically dispenses cash or validates bills as part of an automated cash handling system.
For larger volumes of heat-sensitive materials, a modular room-sized vault is much more economical than purchasing and storing many fire rated safes. Typically these room-sized vaults are utilized by corporations, government agencies and off-site storage service firms. Fireproof vaults are rated up to Class 125-4 Hour for large data storage applications. These vaults utilize ceramic fiber, a high temperature industrial insulating material, as the core of their modular panel system. All components of the vault, not just the walls and roof panels, must be Class 125 rated to achieve that overall rating for the vault. This includes the door assembly (a double door is needed since there is no single Class 125 vault door available), cable penetrations, coolant line penetrations (for split HVAC systems), and air duct penetrations.
There are also Class 150 applications (such as microfilm) and Class 350 vaults for protecting valuable paper documents. Like the data-rated (Class 125) structures, these vault systems employ ceramic fiber insulation and components rated to meet or exceed the required level of protection.
In recent years room-sized Class 125 vaults have been installed to protect entire data centers. As data storage technologies migrate from tape-based storage methods to hard drives, this trend is likely to continue.[8]
A fire-resistant safe is a type of safe that is designed to protect its contents from high temperatures or actual fire. Fire resistant safes are usually rated by the amount of time they can withstand the extreme temperatures a fire produces, while not exceeding a set internal temperature, e.g., less than 350 °F (177 °C). Models are typically available between half-hour and four-hour durations.
In the UK, the BS EN-1047 standard is set aside for data and document safes to determine their ability to withstand prolonged intense heat and impact damage.
These conditions are maintained for the duration of the test. This is usually at least 30 minutes but can extend to many hours depending on grade. Both kinds of safe are also tested for impact by dropping from a set height onto a solid surface and then tested for fire survivability once again.[9]
In the United States, both the writing of standards for fire-resistance and the actual testing of safes is performed by Underwriters Laboratories.
An in-floor safe installed in a concrete floor is very resistant to fire. However, not all floor safes are watertight; they may fill with water from fire hoses. Contents can be protected against water damage by appropriate packaging.
Reinforced, fireproof cabinets are also used for dangerous chemicals or flammable goods.
Wall safes are designed to provide hidden protection for documents and miscellaneous valuables. Adjustable depth allows the maximization of usable space when installed in different wall thicknesses. Some wall safes have pry-resistant recessed doors with concealed hinges. A painting or other wall decoration may be hung over a wall safe to hide it.
Small safes may be fixed to a wall to prevent the entire safe being removed, without concealment. Very small secure enclosures known as key safes, opened by entering a combination, are attached to the wall of a building to store the keys allowing access, so that they are available only to a person knowing the combination, typically for holiday lets, carers, or emergency use.[10][11]
Safe-cracking is opening a safe without a combination or key. There are many methods of safe-cracking ranging from brute force methods to guessing the combination. The easiest method that can be used on many safes is "safe bouncing", which involves hitting the safe on top; this may cause the locking pin to budge, opening the safe[citation needed].
Physicist Richard Feynman gained a reputation for safe-cracking while working on the Manhattan Project during the Second World War. He did this for recreation, describing his experiences and methods in detail in his book Surely You're Joking, Mr. Feynman!. He made the point that the secure storage he successfully opened clandestinely (to which he would have been given access if he asked) contained contents far more important than any thief had ever accessed, all the secrets of the wartime atomic bomb project.[12]
Underwriters Laboratories (UL) testing certifications are known to be some of the most rigorous and most respected in the world.[13] UL provides numerous ratings, the most common security and fire ratings as discussed below. UL ratings are the typical rating standards used for safes within the United States. They are only matched by B.T.U/VDMA certifications (Germany).[14]
UL provides a variety of fire rating classifications, 125, 150, and 350 representing the maximum internal temperature in degrees Fahrenheit the safe may not exceed during the test. The classifications come in durations from
1⁄2-hour to 4 hours in length. The safe is exposed to gradually higher temperatures depending on the duration of the test. The most common standards being the 350 one hour (1,700 degrees) and 350 two hour (1,850 degrees) ratings as the temperature paper chars is approximately 451 degrees Fahrenheit.[15]
UL standards are one of the principal North American protection standards.[16] The resistance time limit specifies "tools on the safe" time without access to contents.[17] The test might take hours to run and can be repeated as many times as the UL staff feel necessary to ensure that all prospective avenues of attack have been thoroughly explored.
This is the entry level security rating offered by Underwriters Laboratories and it has its own standard: (UL 1037).[18] The standard originally had one level, now known as RSC Level I. The standard was expanded in 2016 providing a greater range of security options.[19] This standard also involves a drop test for products weighing not more than 750 pounds, simulating attempting to gain entry by dropping the safe.[20]
Safes at this level are typically, but not exclusively, used for commercial applications such as jewelers and coin dealers. These ratings are granted to combination locked safes that successfully resist when attacked by two technicians with common hand tools, picking tools, mechanical or portable electric tools, grinding points, carbide drills and pressure applying devices or mechanisms. In addition to those requirements, the safe must weigh at least 750 pounds or come with instructions for anchoring, and have body walls of material equivalent to at least 1" open hearth steel with a minimum tensile strength of 50,000 psi. The UL Standard for tool-resistant safes and above are governed by UL Standard 687.[21][22]
Depending on the usage, the European Committee for Standardization has published different European standards for safes. Testing and certification according to these standards should be done by an accredited certification body, e.g. European Certification Body.[24]
For fire-resistant safes the EN 1047-1 (fire resistance standard similar to the fire resistance safe standard of UL) and EN 15659 (for light fire storage units) were published.[27]
Lock(s) or Locked may refer to:
Locksmithing is the work of creating and bypassing locks. Locksmithing is a traditional trade and in many countries requires completion of an apprenticeship. The level of formal education legally required varies by country, ranging from no formal education to a training certificate awarded by an employer, or a full diploma from an engineering college, along with time spent as an apprentice.
A lock is a mechanism that secures buildings, rooms, cabinets, objects, or other storage facilities. A "smith" is a metalworker who shapes metal pieces, often using a forge or mould, into useful objects or to be part of a more complex structure. Thus locksmithing, as its name implies, is the assembly and designing of locks and their respective keys by hand. Most locksmiths use both automatic and manual cutting tools to mold keys, with many of these tools being powered by batteries or mains electricity.
Locks have been constructed for over 2500 years, initially out of wood and later out of metal.[1] Historically, locksmiths would make the entire lock, working for hours hand cutting screws and doing much file-work. Lock designs became significantly more complicated in the 18th century, and locksmiths often specialized in repairing or designing locks.
Although replacing lost keys for automobiles and homes, as well as rekeying locks for security purposes, remains an important part of locksmithing, a 1976 US Government publication noted that modern locksmiths are primarily involved in installing high-quality lock-sets and managing keying and key control systems.
Most locksmiths also provide electronic lock services, such as programming smart keys for transponder-equipped vehicles and implementing access control systems to protect individuals and assets for large institutions.[2] Many also specialise in other areas such as:
In Australia, prospective locksmiths are required to take a Technical and Further Education (TAFE) course in locksmithing, completion of which leads to issuance of a Level 3 Australian Qualifications Framework certificate, and complete an apprenticeship. They must also pass a criminal records check certifying that they are not currently wanted by the police. Apprenticeships can last one to four years. Course requirements are variable: there is a minimal requirements version that requires fewer total training units, and a fuller version that teaches more advanced skills, but takes more time to complete. Apprenticeship and course availability vary by state or territory.[3]
In Ireland, licensing for locksmiths was introduced in 2016,[4] with locksmiths having to obtain a Private Security Authority license. The Irish Locksmith Organisation has 50 members with ongoing training to ensure all members are up-to-date with knowledge and skills.
In the UK, there is no current government regulation for locksmithing, so effectively anyone can trade and operate as a locksmith with no skill or knowledge of the industry.[5]
Fifteen states in the United States require licensure for locksmiths. Nassau County and New York City in New York State, and Hillsborough County and Miami-Dade County in Florida have their own licensing laws.[6] State and local laws are described in the table below. 15 states require locksmith licensing: Alabama, California, Connecticut, Illinois, Louisiana, Maryland, Nebraska, New Jersey, Nevada, North Carolina, Oklahoma, Oregon, Tennessee, Texas and Virginia
Locksmiths may be commercial (working out of a storefront), mobile (working out of a vehicle), institutional (employed by an institution) or investigatory (forensic locksmiths) or may specialize in one aspect of the skill, such as an automotive lock specialist, a master key system specialist or a safe technician.[2] Many locksmiths also work as security consultants, but not all security consultants possess locksmithing skills. Locksmiths are frequently certified in specific skill areas or to a level of skill within the trade. This is separate from certificates of completion of training courses. In determining skill levels, certifications from manufacturers or locksmith associations are usually more valid criteria than certificates of completion. Some locksmiths decide to call themselves "Master Locksmiths" whether they are fully trained or not, and some training certificates appear quite authoritative.
The majority of locksmiths also work on any existing door hardware, not just locking mechanisms. This includes door closers, door hinges, electric strikes, frame repairs and other door hardware.
The issue of full disclosure was first raised in the context of locksmithing, in a 19th-century controversy regarding whether weaknesses in lock systems should be kept secret in the locksmithing community, or revealed to the public.
According to A. C. Hobbs:
A commercial, and in some respects a social doubt has been started within the last year or two, whether or not it is right to discuss so openly the security or insecurity of locks. Many well-meaning persons suppose that the discussion respecting the means for baffling the supposed safety of locks offers a premium for dishonesty, by showing others how to be dishonest. This is a fallacy. Rogues are very keen in their profession, and know already much more than we can teach them respecting their several kinds of roguery. Rogues knew a good deal about lock-picking long before locksmiths discussed it among themselves, as they have lately done. If a lock, let it have been made in whatever country, or by whatever maker, is not so inviolable as it has hitherto been deemed to be, surely it is to the interest of honest persons to know this fact, because the dishonest are tolerably certain to apply the knowledge practically; and the spread of the knowledge is necessary to give fair play to those who might suffer by ignorance. It cannot be too earnestly urged that an acquaintance with real facts will, in the end, be better for all parties. Some time ago, when the reading public was alarmed at being told how London milk is adulterated, timid persons deprecated the exposure, on the plea that it would give instructions in the art of adulterating milk; a vain fear, milkmen knew all about it before, whether they practised it or not; and the exposure only taught purchasers the necessity of a little scrutiny and caution, leaving them to obey this necessity or not, as they pleased.
A commercial, and in some respects a social doubt has been started within the last year or two, whether or not it is right to discuss so openly the security or insecurity of locks. Many well-meaning persons suppose that the discussion respecting the means for baffling the supposed safety of locks offers a premium for dishonesty, by showing others how to be dishonest. This is a fallacy. Rogues are very keen in their profession, and know already much more than we can teach them respecting their several kinds of roguery.
Rogues knew a good deal about lock-picking long before locksmiths discussed it among themselves, as they have lately done. If a lock, let it have been made in whatever country, or by whatever maker, is not so inviolable as it has hitherto been deemed to be, surely it is to the interest of honest persons to know this fact, because the dishonest are tolerably certain to apply the knowledge practically; and the spread of the knowledge is necessary to give fair play to those who might suffer by ignorance.
It cannot be too earnestly urged that an acquaintance with real facts will, in the end, be better for all parties. Some time ago, when the reading public was alarmed at being told how London milk is adulterated, timid persons deprecated the exposure, on the plea that it would give instructions in the art of adulterating milk; a vain fear, milkmen knew all about it before, whether they practised it or not; and the exposure only taught purchasers the necessity of a little scrutiny and caution, leaving them to obey this necessity or not, as they pleased.